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Abstract 

The recently proposed atomic resolution holographic 
scheme [Xu (1996). Appl. Phys. Lett. 68, 
1901-1903] has been expanded to solve the phase 
problems of X-ray crystallography. A macromolecu- 
lar crystal sample is placed on a reference crystal. 
With the structure of the reference crystal known, 
the electron density of the specimen can be resolved 
by the direct mathematical imaging algorithm, 
without using the phase information. Only Bragg 
peaks from the macromolecular crystals are needed 
in the image reconstruction and the requirement to 
have a high-coherence-length X-ray beam may be 
reduced. 

1. Introduction 

X-rays are not unique as probes of molecular 
structure, but the properties of X-ray scattering 
combine to make X-ray crystallography the dominant 
technique for investigating biological structure at 
atomic resolution. Electrons are scattered much more 
strongly than X-rays are, but this property leads to 
multiple-scattering events that complicate the analysis 
of diffraction from thick samples. Neutrons are non- 
ionizing and therefore cause none of the radiation 
damage that afflicts experiments involving X-ray and 
electron scattering but the weakness of neutron 
scattering makes it impractical for routine application 
to great numbers of substances. However, in X-ray 
diffraction, one is not able to recover the electron 
density of any structure (including non-crystalline 
systems) via Fourier inversion because X-rays have a 
frequency of 10~SHz, too fast for any detectors to 
follow, and only the intensity can be obtained 
(Bragg, 1913). This constitutes the phase problem, 
viz the phase information is lost for image recon- 
struction. 

2. Solution of the phase problem 

Special solutions to the phase problem for crystalline 
samples have been obtained, such as 'direct' methods 
pioneered by Karle & Hauptman (1953), so that nearly 
all small-molecule structures are now solved routinely 

(Glusker & Trueblood, 1972). Unfortunately, except 
in rare instances, such methods do not work for 
macromolecular crystals. Instead, the typical approach 
becomes experimental, such as using heavy-atom 
labels (the isomorphous-replacement method) or 
using multiwavelength anomalous diffraction (Hen- 
drickson, 1995). Often, these approaches are indirect 
and of trial-and-error types. For non-crystalline 
structures, solutions to the phase problem have been 
sought but no general solution has been found (Hukins, 
1981). Also, the conventional X-ray hologram cannot 
be constructed because macroscopically coherent 
X-ray beams can only be generated with a wavelength 
of longer than 200A (Crasemann, 1994). 

To solve the phase problem, a new scheme has 
been proposed in which the incident X-ray beam is 
diffracted by a sample-reference-crystal assembly 
(Xu, 1996). The recorded scattering intensity con- 
tains the cross modulation of both electron densities 
and the unknown electron density can be resolved 
using a straightforward algorithm without the need 
for any phase information. Compared with other 
holographic methods that originated from Gabor 
(1948), the present method has advantages over 
soft-X-ray holography (Sayre & Chapman, 1995) 
because it eliminates the need for a reference beam 
and thus for a macroscopically coherent source, as 
well as having advantages over photoelectron holog- 
raphy (Szoke, 1986, 1993) because it does not 
require all radiating atoms to have identical environ- 
ments oriented in the same way. 

In this paper, the new scheme is expanded from 
amorphous systems to biological macromolecular 
crystals and is illustrated using simulated results in 
2D. The simulated results show that, contrary to the 
case of amorphous systems where almost the entire 
scattering spectrum has to be used, in this case only 
the Bragg peaks from the macromolecular crystals 
are used. This makes the scheme extremely simple: 
one only has to measure the same number of 
intensities as usual. The difference is that they are 
now modulated by the presence of the reference 
crystal. 

Fig. 1 shows the experimental set-up similar to 
those of conventional X-ray scattering, where a 
monochromatic beam is scattered by a macromole- 
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cular crystal (S) attached to an inorganic single 
crystal (R), which also serves as the sample mount.  
Consider a molecular  crystal having a unit cell of  
10 × 10,~ in the (x ,y)  plane, for which an electron 
density has been created by a random-number  
generator,  and which has a total of  5 unit cells 
along the x axis and 10 along the y axis. Attach this 
to a reference crystal (square lattice of 2 × 2/k) ,  
which spans f rom 50 to 100 along the x axis. The 
combined 2D electron-density function p(x,y) is 
shown in Fig. 2(a). With the assumption of  unit 
amplitude for the incoming beam, the scattered 
intensity f rom the sample- reference  assembly is 
given by 

l (k)  = ~ ~ p ( r )p ( r  ') exp[ik(r  - r ')], (1) 
r r' 

where p(r)  is the electron density of  the assembly at 
point r = ( x , y )  and k is the scattering vector 
(k = k in -kou t ) .  The diffracted intensity, I, is 
shown in Fig. 2(b) a s  11/4. This is given as the 
fourth root to shrink the intensity range. The 
intensity data would, in practice,  be recorded by 20, 
the actual measurement .  

According to the proposed scheme (Xu, 1996), the 15 i 
inverse Fourier  t ransform can be per formed on l(k x, k 0 
to get the auto-correlation of  p, also called the Patterson 1 
function (P),  which is given by (Fig. 2c) 

Fk~,.vl(k x, ky) - P(u, v) = ~ p(x, y)p(x + u, y + v). 
x ,y  

(2) 10 

Notice, for u > 50, the second density term 
p ( x + u , y + v )  is in the reference-crystal  area,  
whereas the first term, p(x, y) (for x < 50), is within 
the unknown sample. Therefore,  substitution of  the 
simulated reference density by 0 and 1 makes the 
whole equation become linear and the unknown Ac'a'ln. 
density can be recovered by (Xu, 1996) 

P(Xma x - -  U, Ymax - -  V )  : P(u, v) + P(u + 2, v + 2) 

- P(u, v + 2) - P(u + 2, v), (3)  

X-ray I 
L 

Fig. 1. The experimental set-up showing a specimen (S) attached to a 
crystal (R) and the 2D X-ray scattering detector (D). 

which gives a 2D unit cell with x--- 1-10,  y -  1-10,  
identical to that shown in Fig. 2(a) (Xma x = 50 and 
Ymax -- 100). 

TO demonstrate that one only needs to use the 
Bragg diffraction f rom the molecular  crystal ,  a 1D 
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Fig. 2. (a) The 2D electron-density map of the specimen attached to a 
reference crystal of lattice constants 2 x 2 valued as 0 and 1. (b) 
The 2D intensity for the density in (a) (11/4), where both k x and k,. 
run from 0 to 100 and are expressed in units of dk = 2rr/(200Ax). 
Peaks at (kx, k 0 = (100, 100) and (0,0) are removed for better 
viewing. (c) The 2D Patterson function P(u, v) of (a), obtained by 
2D Fourier inversion from the intensity (x, y axes inverted). 
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density p(x, y - -  1) extracted from the above electron 
density will be used. It has two different periods 
(Fig. 3a): a molecular crystal of lattice constant 10 
and the reference crystal of lattice constant 2. Notice 
for real specimens that both the number of 
coordinate points and the number of unit cells are 
going to be much larger if hngstr6m resolution needs 
to be achieved (each unit cell has thousands of atoms 
and the sample will be of micrometre size). There- 
fore, for illustration, the number of molecular unit 
cells is now expanded from 5 to 50 and the number 
of reference-crystal cells from 25 to 250. The 1D 
scattering intensity of the molecular crystal plus the 
reference crystal is then given by Fig. 3(b), where 
there are sharp peaks at k = n x 2 0 0  ( n - 1 , 2  . . . .  ) 
owing to the Bragg diffraction of the sample and a 
major peak at k -  11300 owing to the reference- 
crystal lattice of period 2 [note that k is in units of 
Ak -- 2zr/(2000Ax)]. 
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Fig. 3. (a) The 1D electron-density map along the x axis (y = 1 of Fig. 
2a). (b) The ID intensity (/I/4) for 50 sample unit cells plus 250 
reference-crystal unit cells, where k (= 0-2000) is in units of 
Ak = 2rr/(2000Ax). 

Unlike the amorphous cases, where the entire 
diffraction spectrum is needed for the image reconstruc- 
tion (Xu, 1996), here one can neglect the scattering 
located between the Bragg peaks (Fig. 4a). In fact, in 
this example, one will get the Patterson function, from 
which all 50 molecular unit cells can be obtained. Since 
they are assumed to be identical, the best result will be 
given by the arithmetic average of these 50 unit cells 
[Fig. 4(b) shows the result of such an average, which is 
repeated five times for illustration]. The small distortion 
in the final result was attributed to the fact that there are 
only 50 unit cells and the Bragg peaks are not perfectly 
sharp. 

In order to avoid the strong Bragg diffraction of the 
reference crystal eclipsing the scattering from the 
molecular crystal and to avoid the measurement of 
intensity with k values near zero, the above 1D intensity 
was further modified to remove the large values at k 
near 0 and k -  1000 (when the reference crystal and 
sample are incommensurate, the reference Bragg peaks 
can be removed without having to remove any sample 
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Fig. 4. (a) The 1D 'chopped' intensity (11/4) (from Fig. 3b). (b) The 

1D density obtained from (a) using algorithmic average. 



G. XU 239 

100 

80 i; '. 

60 1 ' 

°Ilt 
- 2 0 r  

-40 
0 

J 
! ! , ,  

i 
t. . , . _ .l ...; 

1 O0 200 300 400 SO0 600 700 800 900 1000 

(a) 

400 

350 

30C 

250 

200 

150 

'°°II~TTTI 
i 

5o! 

0 - -  
0 1 0 0  200 300 400 500 600 

(b) 

. . . . .  : . . . . .  J_. ..~ 
700 800  900  1000 

0 6 [ -  

ii! 
0.3"  

0 .2  

0.'1 

0 

-0.'1 

--0.2 

-0.:3 

-0.4 
0 

i 

I0 

r 

,, jl! 
I 

I 

j 
I 

15 20 25 30 

(c) 

- -  - - - ~  . -  - r  . . . .  

i 

i 
i 

3s -40 4s 
_ . J  

50 

Fig. 5. (a) The 1D Patterson function of 'chopped' intensity (Fig. 4a) 
with peaks of k = 1000 and k = 0 removed. (b) The 1D Patterson 
function of 'chopped' intensity (Fig. 4a) before removing the peaks 
at k = 1000 and k = 0. (c) The ID density obtained from (a) using 
the algorithmic average. 
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Fig. 6. (a) Part of the ID electron-density map, where there is a 'gap' 
at the junction between the sample (50 unit cells) and the reference 
(248 unit cells). (b) The ID intensity (11/4) for 50 sample unit cells 
plus 248 reference unit cells, with k in units of Ak = 2zr/(2000Ax). 
(c) The 1D density obtained recovered from (b). 
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Fig. 7. (a) Part of the I D electron-density map, where there are 50 
sample unit cells of period 10 and 166 reference unit cells of period 
3. (b) The 1D intensity (p/4) of (a) with two Bragg peaks located 
near k = 660 and k = 1330 from the reference crystal [k is in units 
of Ak = 2zr/(2000Ax)]. (c) The I D density recovered from (b). 

Bragg peaks). The resulting Patterson function is shown 
in Fig. 5(a), where some negative values and low- 
frequency oscillations appear, which is compared with 
the Patterson function before removal of the reference- 
crystal reflections (Fig. 5b). This is because the 
intensities at k near 0 represented the constant and 
low-frequency oscillation components. Nevertheless, 
following the same procedure (plus the arithmetic 
average), one can still obtain a reasonably good electron 
density (Fig. 5c). 

Moreover, because of the fact that only Bragg peaks 
from the sample (molecular crystals) are used, one is 
able to sacrifice more intensity on a synchrotron to gain 
longer coherence lengths (using finer pinholes etc.)  to 
cover the entire sample assembly. Moreover, when the 
coherence lengths are smaller than the assembly, this 
scheme may still be used. In that case, the intensity 
signal contributed by the sample crystal alone will have 
to be removed from the data (whereas the intensity 
attributed to the reference crystal alone, the major 
Bragg peaks, will be removed anyway). The ratio of this 
intensity from the sample alone versus the intensity of 
both sample and reference crystal will have to be 
estimated from the sample size and coherent lengths. 
Also, since the only difference here is the addition of the 
reference crystal, no extra radiation damage should 
occur. 

Finally, to test the stability and robustness of the 
scheme, as well as to show that the two lattice periods 
(sample and reference) do not need to have integer 
ratio, a number of numerical experiments are provided. 
In the first case, the reference crystal is shifted away 
from the sample, or chopped off by a few coordinate 
points at the juncture (Fig. 6a), so that there is a gap 
between the two. The resulting intensities and the 
recovered densities show very little change from the 
ideal case (Figs. 6b, c). This is because the proposed 
algorithm is expressed by the linear equation (2), which 
not only provides a unique solution but also has good 
stability. The important consequence of the test is that 
there is no need for the sample to be firmly attached to 
the reference crystal, nor a necessity to know the exact 
size of the reference crystal. In the second case, the 
periodicity of the reference crystal is changed from 2 to 
3 (Fig. 7a) and the resulting intensity shows two Bragg 
peaks of the reference crystal at incommensurate 
positions to those of the sample (Fig. 7b). From the 
same algorithm [equation (3) except 2 has to be replaced 
by 3], an accurate sample density is recovered (Fig. 7¢). 
In the last case, a combined test is performed, where not 
only a gap is added between the sample and the 
reference (which has a period of 3), but also a number 
of defects - vacancies and interstitials are incorporated 
into the references (Fig. 8a). The intensity is shown in 
Fig. 8(b) where some noise is also visible. As a result, 
there are a small number of bad unit cells in the 
recovered sample density (Fig. 8c). However, after 
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Fig. 8 (a) Part of the 1D electron-density map, showing a 'gap', a couple of 'vacancies' and an 'interstitial' on top of the 166 reference unit cells 
of period 3. (b) The 1D intensity (1TM) of (a) with some 'noise' [k is in units of Ak = 2zr/(200OAx)]. (c) Part of the 1D density recovered from 
(b), containing a few 'bad' unit cells. (d) Result of (c) after the arithmetic average. 

using the ari thmetic average described above, a good 
result is obtained again (Fig. 8d). 
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